Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers
1 
ACI Subcommittee 445 (2002). Examples for the design of structural concrete with strut-and-tie models, Special Publication SP-208, American Concrete Institute, Farmington Hills, Michigan, USA.ACI Subcommittee 445 (2002). Examples for the design of structural concrete with strut-and-tie models, Special Publication SP-208, American Concrete Institute, Farmington Hills, Michigan, USA.Google Search
2 
ACI-ASCE Committee 445 (2010). Further examples for the design of structural concrete with strut-and-tie models; SP-273, American Concrete Institute, Farmington Hills, Michigan, USA.ACI-ASCE Committee 445 (2010). Further examples for the design of structural concrete with strut-and-tie models; SP-273, American Concrete Institute, Farmington Hills, Michigan, USA.Google Search
3 
Alshegeir, A. and Ramirez, J. A. (1992). “Strut-tie approach in pretensioned deep beams.” ACI Structural Journal, Vol. 89, No. 3, pp. 296-304. Alshegeir, A. and Ramirez, J. A. (1992). “Strut-tie approach in pretensioned deep beams.” ACI Structural Journal, Vol. 89, No. 3, pp. 296-304.Google Search
4 
American Association of State Highway and Transportation Officials (2010). AASHTO LRFD bridge design specifications, 5th Edition, Washington D.C., USA.American Association of State Highway and Transportation Officials (2010). AASHTO LRFD bridge design specifications, 5th Edition, Washington D.C., USA.Google Search
5 
American Concrete Institute (2014). Building code requirements for structural concrete (ACI 318-14) and commentary, Farmington Hills, Michigan, USA. American Concrete Institute (2014). Building code requirements for structural concrete (ACI 318-14) and commentary, Farmington Hills, Michigan, USA.Google Search
6 
Canadian Standards Association (2004). Design of concrete structures for buildings, CSA A23.3-M04, Rexdale, Ontario, Canada.Canadian Standards Association (2004). Design of concrete structures for buildings, CSA A23.3-M04, Rexdale, Ontario, Canada.Google Search
7 
Chae, H. S. and Yun, Y. M. (2015). “Strut-tie models and load distribution ratios for reinforced concrete deep beams with shear span-to-effective depth ratio of less than 3.0 - (I) Models and Load Distribution Ratios.” Journal of the Korean Concrete Institute, KCI, In Review (in Korean).Chae, H. S. and Yun, Y. M. (2015). “Strut-tie models and load distribution ratios for reinforced concrete deep beams with shear span-to-effective depth ratio of less than 3.0 - (I) Models and Load Distribution Ratios.” Journal of the Korean Concrete Institute, KCI, In Review (in Korean).Google Search
8 
Comite Euro-International du Beton (2010). CEP-FIP model code 2010, International Federation for Structural Concrete (fib), Lausanne, Switzerland.Comite Euro-International du Beton (2010). CEP-FIP model code 2010, International Federation for Structural Concrete (fib), Lausanne, Switzerland.Google Search
9 
Foster, S. J. and Gilbert, R. I. (1998). “Experimental studies on high-strength concrete deep beams.” ACI Structural Journal, Vol. 95, No. 4, pp. 382-390.Foster, S. J. and Gilbert, R. I. (1998). “Experimental studies on high-strength concrete deep beams.” ACI Structural Journal, Vol. 95, No. 4, pp. 382-390.Google Search
10 
Jeon, C. H. and Yun, Y. M. (2010). “Validity evaluation fo effective strength of concrete strut using strut-tie model analysis of structural concrete.” Journal of the Korean Society of Civil Engineers, Vol. 30, No. 5, pp. 443-462 (in Korean).Jeon, C. H. and Yun, Y. M. (2010). “Validity evaluation fo effective strength of concrete strut using strut-tie model analysis of structural concrete.” Journal of the Korean Society of Civil Engineers, Vol. 30, No. 5, pp. 443-462 (in Korean).Google Search
11 
Kaufman, M. K. and Ramirez, J. A. (1988). “Re-evaluation of the ultimate shear behavior of high-strength concrete prestressed I-beams.” ACI Sturctural Journal, Vol. 85, No. 3, pp. 295-303.Kaufman, M. K. and Ramirez, J. A. (1988). “Re-evaluation of the ultimate shear behavior of high-strength concrete prestressed I-beams.” ACI Sturctural Journal, Vol. 85, No. 3, pp. 295-303.Google Search
12 
Pang, X. B. and Hsu, T. T. C. (1995). “Behavior of reinforced concrete membrane elements in shear.” ACI Structural Journal, Vol. 92, No. 6, pp. 665-679.Pang, X. B. and Hsu, T. T. C. (1995). “Behavior of reinforced concrete membrane elements in shear.” ACI Structural Journal, Vol. 92, No. 6, pp. 665-679.Google Search
13 
Ramirez, J. A. (1994). “Strut-tie design of pretensioned concrete members.” ACI Structural Journal, Vol. 91, No. 4, pp. 572-578.Ramirez, J. A. (1994). “Strut-tie design of pretensioned concrete members.” ACI Structural Journal, Vol. 91, No. 4, pp. 572-578.Google Search
14 
Saqan, E. I. and Frosch, R. J. (2009). “Influence of flexural reinforcement on shear strength of prestressed concrete beams.” ACI Structural Journal, Vol. 106, No. 7, pp. 60-68.Saqan, E. I. and Frosch, R. J. (2009). “Influence of flexural reinforcement on shear strength of prestressed concrete beams.” ACI Structural Journal, Vol. 106, No. 7, pp. 60-68.Google Search
15 
Shahawy, M. A. and Batchelor, B. D. (1996). “Shear behavior of full-scale prestressed concrete girders: Comparison Between AASHTO Specifications and LRFD Code.” PCI Journal, Vol. 41, No. 3, pp. 48-62.Shahawy, M. A. and Batchelor, B. D. (1996). “Shear behavior of full-scale prestressed concrete girders: Comparison Between AASHTO Specifications and LRFD Code.” PCI Journal, Vol. 41, No. 3, pp. 48-62.Google Search
16 
Shahawy, M. A. and Cai, C. S. (1999). “A new approach to shear design of prestressed concrete members.” PCI Journal, Vol. 44, No. 4, pp. 92-117.10.15554/pcij.07011999.92.117Shahawy, M. A. and Cai, C. S. (1999). “A new approach to shear design of prestressed concrete members.” PCI Journal, Vol. 44, No. 4, pp. 92-117.DOI
17 
Tan, K. H. and Mansur, M. A. (1992). “Partial prestressing in concrete corbels and deep beams.” ACI Structural Journal, Vol. 89, No. 3, pp. 251-262.Tan, K. H. and Mansur, M. A. (1992). “Partial prestressing in concrete corbels and deep beams.” ACI Structural Journal, Vol. 89, No. 3, pp. 251-262.Google Search
18 
Tan, K. H., Tong, K. and Tang, C. Y. (2001). “Direct strut-and-tie model for prestressed deep beams.” Journal of Structural Engineering, ASCE, Vol. 127, No. 9, pp. 1076-1084.10.1061/(ASCE)0733-9445(2001)127:9(1076)Tan, K. H., Tong, K. and Tang, C. Y. (2001). “Direct strut-and-tie model for prestressed deep beams.” Journal of Structural Engineering, ASCE, Vol. 127, No. 9, pp. 1076-1084.DOI
19 
Yun, Y. M. (2005). “Effective strength of concrete strut in strut-tie model (I): Methods for Determining Effective Strength of Concrete Strut.” Journal of the Korean Society of Civil Engineers, Vol. 25, No. 1, pp. 49-59 (in Korean).Yun, Y. M. (2005). “Effective strength of concrete strut in strut-tie model (I): Methods for Determining Effective Strength of Concrete Strut.” Journal of the Korean Society of Civil Engineers, Vol. 25, No. 1, pp. 49-59 (in Korean).Google Search
20 
Yun, Y. M. and Lee, W. S. (2005). “Nonlinear strut-tie model analysis of pre-tensioned concrete deep beams.” Journal of Advances in Structural Engineering, Vol. 8, No. 1, pp. 85-98. 10.1260/136943305374961610.1260/1369433053749616Yun, Y. M. and Lee, W. S. (2005). “Nonlinear strut-tie model analysis of pre-tensioned concrete deep beams.” Journal of Advances in Structural Engineering, Vol. 8, No. 1, pp. 85-98.DOI