Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers

References

1 
"Chollet, F. (2015). “Keras: The Python deep learning library.” Available online: https://keras.io/api/applications/"URL
2 
"Hang, J., Wu, Y., Li, Y., Lai, T., Zhang, J. and Li, Y. (2023). “A deep learning semantic segmentation network with attention mechanism for concrete crack detection.” Structural Health Monitoring., Vol. 22, No. 5, pp. 3006-3026, https://doi.org/10.1177/14759217221126170."DOI
3 
"He, K., Zhang, X., Ren, S. and Sun, J. (2015). “Deep residual learning for image recognition.” arXiv preprint, arXiv:1512.03385."DOI
4 
"Howard, A. G., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V. and Adam, H. (2019). “Searching for MobileNetV3.” Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1314-1324."URL
5 
"Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam, H. (2017). “MobileNets: Efficient convolutional neural networks for mobile vision applications.” arXiv preprint arXiv:1704.04861."DOI
6 
"Huang, G., Liu, Z., van der Maaten, L. and Weinberger, K. Q. (2017). “Densely connected convolutional networks.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4700-4708, https://doi.org/10.1109/CVPR.2017.243."DOI
7 
"Jordan, J. (2018). “Common architectures in convolutional neural networks.” Available online: https://www.jeremyjordan.me/ convnet-architectures/"URL
8 
"Krizhevsky, A., Sutskever, I. E. and Hinton, G. (2012). “ImageNet classification with deep convolutional neural networks.” Advances in Neural Information Processing Systems, Vol. 25, pp. 1097-1105."URL
9 
"Lin, M., Chen, Q. and Yan, S. (2014). “Network in network.” arXiv preprint, arXiv:1312.4400."DOI
10 
"Lin, Y., Lv, F., Zhu, S., Yang, M., Cour, T., Yu, K., Cao, L. and Huang, T. (2010). “Large-scale image classification: fast feature extraction and SVM training.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 761-768."DOI
11 
"Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L. C. (2018). “MobileNetV2: Inverted residuals and linear bottlenecks.” arXiv preprint arXiv:1801.04381."DOI
12 
"Simonyan, K. and Zisserman, A. (2014). “Very deep convolutional networks for large-scale image recognition.” arXiv preprint, arXiv:1409.1556."DOI
13 
"Tan, M. and Le, Q. V. (2019). “EfficientNet: Rethinking model scaling for convolutional neural networks.” Proceedings of the 36th International Conference on Machine Learning (ICML), pp. 6105-6114."URL
14 
"Xu, Y., Fan, Y., Qiao, W. and Li, H. (2021). “Lightweight deep learning model of semantic segmentation for complex concrete cracks in actual bridge inspection.” Structural Health Monitoring, 2021, https://doi.org/10.12783/shm2021/36273."DOI
15 
"Zadeh, S. S., Birgani, S. A., Khorshidi, M. and Kooban, F. (2024). “Concrete surface crack detection with convolutional-based deep learning models.” arXiv preprint, arXiv:2401.07124."DOI
16 
"Zhang, Y., Ni, Y. Q., Jia, X. and Wang, Y. W. (2025). “Lightweight concrete crack recognition model based on improved MobileNetV3.” Scientific Reports, Vol. 15, No. 1, 15704, https://doi.org/10.1038/s41598-025-00468-7."DOI