Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers

References

1 
"Devia, G. K., Ganasri, B. P. and Dwarakish, G. S. (2015). “A review on hydrological models.” Aquatic Procedia, Vol. 4, pp. 1001-1007, https://doi.org/10.1016/j.aqpro.2015.02.126."DOI
2 
"Essam, Y., Huang, Y. F., Ng, J. L., Birima, A. H., Ahmed, A. N. and El-Shafie, A. (2022). “Predicting streamflow in Peninsular Malaysia using support vector machine and deep learning algorithms.” Scientific Reports, Vol. 12, No. 1, 3883, https://doi.org/10.1038/s41598-022-07693-4."DOI
3 
"Fraser, A. M. and Swinney, H. L. (1986). “Independent coordinates for strange attractors from mutual information.” Physical Review A, Vol. 33, No. 2, pp. 1134-1140, https://doi.org/10.1103/PhysRevA.33.1134."DOI
4 
"Gao, S., Huang, Y., Zhang, S., Han, J., Wang, G., Zhang, M. and Lin, Q. (2020). “Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation.” Journal of Hydrology, Vol. 589, 125188, https://doi.org/10.1016/j.jhydrol.2020.125188."DOI
5 
"Hilborn, R. C. (1994). Chaos and Nonlinear Dynamics, Oxford University Press."URL
6 
"Hu, C., Wu, Q., Li, H., Jian, S., Li, N. and Lou, Z. (2018). “Deep learning with a long short-term memory networks approach for rainfall-runoff simulation.” Water, Vol. 10, No. 11, 1543, https://doi.org/10.3390/w10111543."DOI
7 
"Jeong, D. I., Kim, Y. O., Cho, S. and Shin, H. (2003). “A study on rainfall-runoff models for improving ensemble streamflow prediction -1. Rainfall-runoff models using artificial neural networks-.” Journal of the Korean Society of Civil Engineers B, Vol. 23, No. 6B, pp. 521-530 (in Korean)."URL
8 
"Kwon, H. H. and Moon, Y. I. (2005). “The forecast of hydrologic time series using the state-space model and the nearest neighbor method.” Journal of the Korean Society of Civil Engineers B, Vol. 25, No. 4B, pp. 275-283 (in Korean)."URL
9 
"Kwon, H. H. and Moon, Y. I. (2006). “Dynamic nonlinear prediction model of univariate hydrologic time series using the support vector machine and state-space model.” Journal of the Korean Society of Civil Engineers B, Vol. 26, No. 3B, pp. 279-289 (in Korean)."DOI
10 
"Mok, J., Choi, J. and Moon, Y. (2020). “Prediction of multipurpose dam inflow using deep learning.” Journal of Korean Water Resources Association, Vol. 53, No. 2, pp. 97-105, https://doi.org/10.3741/JKWRA.2020.53.2.97 (in Korean)."DOI
11 
"Moon, Y. I. and Lall, U. (1996). “Atmospheric flow indices and interannual great salt lake variability.” Journal of Hydrologic Engineering, ASCE, Vol. 1, No. 2, pp. 55-62, https://doi.org/10.1061/(ASCE)1084-0699(1996)1:2(55)."DOI
12 
"Nash, J. E. and Sutcliffe, J. V. (1970). “River flow forecasting through conceptual models part I - A discussion of principles.” Journal of Hydrology, Vol. 10, pp. 282-290, https://doi.org/10.1016/0022-1694(70)90255-6."DOI
13 
"Park, M. and Yang, H. (2024). “Comparative study of time series analysis algorithms suitable for short-term forecasting in implementing demand response based on AMI.” Sensors, Vol. 24, 7205, https://doi.org/10.3390/s24227205."DOI
14 
"Sauer, Y., Yorke, J. A. and Casdagli, M. (1991). “Embedology.” Journal of Statistical Physics, Vol. 65, pp. 579-616, https://doi.org/10.1007/BF01053745."DOI
15 
"Takens, F. (1981). “Detecting strange attractors in turbulence. In, Rand, D.A. and L.S. Young (eds.).” Dynamical systems and Turbulence. Springer-Verlag. Berlin, Vol. 898, pp. 366-381."DOI