Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers

References

1 
"Adak, S., Mandal, N., Mukhopadhyay, A., Maity, P. P. and Sen, S. (2023). “Current state and prediction of future global climate change and variability in terms of CO2 levels and temperature.” In: Naorem, A., Machiwal, D. (eds) Enhancing Resilience of Dryland Agriculture Under Changing Climate. Springer, Singapore, pp. 15-43, https://doi.org/10.1007/978-981-19-9159-2_2."DOI
2 
"Berga, L. (2016). “The role of hydropower in climate change mitigation and adaptation: A review.” Engineering, Vol. 2, pp. 313-318, https://doi.org/10.1016/j.eng.2016.03.004."DOI
3 
"Bulut, M. (2021). “Hydroelectric generation forecasting with long short term memory (LSTM) based deep learning model for Turkey.” arXiv, 2109.09013, https://doi.org/10.48550/arXiv.2109.09013."DOI
4 
"Chilkoti, V., Bolisetti, T. and Balachandar, R. (2017). “Climate change impact assessment on hydropower generation using multi-model climate ensemble.” Renewable Energy, Vol. 109, pp. 510-517, https://doi.org/10.1016/j.renene.2017.02.041."DOI
5 
"Ekanayake, P., Wickramasinghe, L., Jayasinghe, J. M. J. and Rathnayake, U. (2021). “Regression-based prediction of power generation at Samanalawewa Hydropower Plant in Sri Lanka using machine learning.” Mathematical Problems in Engineering 2021, pp. 12, https://doi.org/10.1155/2021/4913824."DOI
6 
"Fan, J., Hu, J., Zhang, X., Kong, J., Li, F. and Mi, Z. (2020). “Impacts of climate change on hydropower generation in China.” Mathematics and Computers in Simulation, Vol. 167, pp. 4-18, https://doi.org/10.1016/j.matcom.2018.01.002."DOI
7 
"Hanoon, M., Ahmed, A., Razzaq, A., Oudah, A., Alkhayyat, A., Huang, Y., Kumar, P. and El-Shafie, A. (2023). “Prediction of hydropower generation via machine learning algorithms at three Gorges Dam, China.” Ain Shams Engineering Journal, Vol. 14, No. 4, 101919, https://doi.org/10.1016/j.asej.2022.101919."DOI
8 
"Hochreiter, S. and Schmidhuber, J. (1997). “Long short-term memory.” Neural Computation, Vol. 9, No. 8, pp. 1735-1780, https://doi.org/10.1162/neco.1997.9.8.1735."DOI
9 
"IPCC. (2021). “Climate Change 2021: The physical science basis.” Cambridge University Press: Cambridge, UK, https://doi.org/10.1515/ci-2021-0407."DOI
10 
"Jung, J., Han, H., Kim, K. and Kim, H. S. (2021). “Machine learning-based small hydropower potential prediction under climate change.” Energies, 2021, Vol. 14, No. 12, pp. 3643, https://doi.org/10.3390/en14123643."DOI
11 
"Korean Statistical Information Service(KOSIS) (2023). South Korea, Available at: https://kosis.kr/search/search.do?query=발전량 (Accessed: January 28, 2025)."URL
12 
"Kim, Y., Kim, Y., Hwang, S. and Kim, D. (2022). “Prospect of future water resources in the basins of Chungju Dam and Soyang-gang Dam using a physics-based distributed hydrological model and a deep-learning-based LSTM model.” Journal of Korea Water Resources Association, Vol. 55, No. 12, pp. 1115-1124, https://doi.org/10.3741/JKWRA.2022.55.12.1115 (in Korean)."DOI
13 
"Liu, X., Tang, Q., Voisin, N. and Cui, H. (2016). “Projected impacts of climate change on hydropower potential in China.” Hydrology and Earth System Sciences, Vol. 20, pp. 3343-3359, https://doi.org/10.5194/hess-20-3343-2016."DOI
14 
"Raftery, A. E., Balabdaoui, F., Gneiting, T. and Polakowski, M. (2005). “Using Bayesian model averaging to calibrate forecast ensembles.” American Meteorological Society, Vol. 133, No. 5, pp. 1155-1174, https://doi.org/10.21236/ada459828."DOI
15 
"Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I. (2010). “A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration Index.” Journal of Climate, Vol. 23, pp. 1696-1718, https://doi.org/10.1175/2009jcli2909.1."DOI
16 
"Wang, H., Xiao, W., Wang, Y., Zhao, Y., Lu, F., Yang, M., Hou, B. and Yang, H. (2019). “Assessment of the impact of climate change on hydropower potential in the Nanliujiang River basin of China.” Energy, Vol. 167, pp. 950-959, https://doi.org/10.1016/j.energy.2018.10.159."DOI
17 
"Wang, S., Kim, J., Kim, Y., Kim, D. and Kim, T.-W. (2024). “The effect of climate change on hydroelectric power generation of multipurpose dams according to SSP scenarios.” Journal of Korea Water Resources Association, Vol. 57, No. 7, pp. 481-491, https://doi.org/10.3741/JKWRA.2024.57.7.481 (in Korean)."DOI
18 
"Zhong, Y., Guo, S., Ba, H., Xiong, F., Chang, F. and Lin, K. (2018). “Evaluation of the BMA probabilistic inflow forecasts using TIGGE numeric precipitation predictions based on artificial neural network.” Hydrology Research, Vol. 49, No. 5, pp. 1417-1433, https://doi.org/10.2166/nh.2018.177."DOI