Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers

References

1 
"Bengio, Y. (2012). “Practical recommendations for gradient-based training of deep architectures.” In Neural Networks: Tricks of the Trade: Second Edition, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 437-478."DOI
2 
"Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B. and Shelhamer, E. (2014). “cuDNN: Efficient primitives for deep learning.” arXiv preprint, arXiv:1410.0759."DOI
3 
"Choi, D. Y., Paik, S. H., Kim, Y. K., Jung, S. W. and Kim, D. N. (2021). “Deep-learning crack analysis for visual-safety inspection of bridge by drones.” Journal of the Korea Information Technology Society, Vol. 19, No. 12, pp. 115-121 (in Korean)."URL
4 
"Lai, D., Demartino, C. and Xiao, Y. (2023). “Interpretable machine-learning models for maximum displacements of RC beams under impact loading predictions.” Engineering Structures, Vol. 281, 115723."DOI
5 
"Lederer, J. (2021). “Activation functions in artificial neural networks: A systematic overview.” arXiv preprint, arXiv, https://arxiv.org/abs/2101.09957."URL
6 
"Malekloo, A., Ozer, E., AlHamaydeh, M. and Girolami, M. (2022). “Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights.” Structural Health Monitoring, Vol. 21, No. 4, pp. 1906-1955."DOI
7 
"Medsker, L. R. and Jain, L. (2001). “Recurrent neural networks.” Design and Applications, Vol. 5, pp. 64-67."URL
8 
"Ministry of Land, Infrastructure and Transport (MOLIT) (2021). Detailed Guidelines for the Safety and Maintenance of Facilities (Part of Safety Inspection and Precise Safety Diagnosis). Jinju: Korea Authority of Land & Infrastructure Safety (in Korean)."URL
9 
"Nie, M., Xia, Y. H. and Yang, H. S. (2019). “A flexible and highly sensitive graphene-based strain sensor for structural health monitoring.” Cluster Computing, Vol. 22, pp. 8217-8224."DOI
10 
"Park, S. W., Chang, M. W., Yun, D. G. and No, M. H. (2023). “A study on the analysis of bridge safety by truck platooning.” Journal of the Korea Information Technology Society, Vol. 27, pp. 50-58 (in Korean)."URL
11 
"Sah, R. K., Kumar, A., Gautam, A. and Rajak, V. K. (2022). “Temperature independent FBG based displacement sensor for crack detection in civil structures.” Optical Fiber Technology, Vol. 74, 103137."DOI
12 
"Sarwar, M. Z. and Park, J. W. (2020). “Bridge displacement estimation using a co-located acceleration and strain.” Sensors, Vol. 20, No. 4, 1109."DOI
13 
"Shyam, R., Ayachit, S. S., Patil, V. and Singh, A. (2020, December). “Competitive analysis of the top gradient boosting machine learning algorithms.” In 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN) (pp. 191-196). IEEE."DOI
14 
"Siami-Namini, S., Tavakoli, N. and Namin, A. S. (2019). “The performance of LSTM and BiLSTM in forecasting time series.” In 2019 IEEE International Conference on Big Data (Big Data) (pp. 3285-3292). IEEE."DOI
15 
"Van Rossum, G. and Drake Jr, F. L. (1995). Python tutorial (Vol. 620). Amsterdam, The Netherlands: Centrum voor Wiskunde en Informatica."URL
16 
"Wang, Q., Ma, Y., Zhao, K. and Tian, Y. (2020). “A comprehensive survey of loss functions in machine learning.” Annals of Data Science, Vol. 1, pp. 1-26."DOI
17 
"Won, J. B., Park, J. W., Park, J. Y., Shin, J. S. and Park, M. Y. (2021). “Development of a reference-free indirect bridge displacement sensing system.” Sensors, Vol. 21, No. 16, 5647."DOI
18 
"Yazdanpanah, O., Chang, M. W., Park, M. S. and Kim, C. Y. (2022). “Seismic response prediction of RC bridge piers through stacked long short-term memory network.” Structures, Vol. 45, pp. 1990-2006."DOI
19 
"Yeon, S. H., Kim, J. S. and Yeon, C. H. (2019). “A study on smart sensor-based bridge infrastructure safety monitoring techniques.” Korean Journal of Geographic Information Studies, Vol. 22, No. 2, pp. 97-106."URL
20 
"Yessoufou, F. and Zhu, J. (2023). “Classification and regression-based convolutional neural network and long short-term memory configuration for bridge damage identification using long-term monitoring vibration data.” Structural Health Monitoring, Vol. 22, No. 6, pp. 4027-4054."DOI
21 
"Yu, Y., Si, X., Hu, C. and Zhang, J. (2019). “A review of recurrent neural networks: LSTM cells and network architectures.” Neural Computation, Vol. 31, No. 7, pp. 1235-1270."DOI