Mobile QR Code QR CODE : Journal of the Korean Society of Civil Engineers

References

1 
"Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M. and Inman, D. J. (2017). “Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks.” Journal of Sound and Vibration, Elsevier, Vol. 388, pp. 154-170, https://doi.org/10.1016/j.jsv.2016.10.043."DOI
2 
"Cha, Y. J., Choi, W. and Büyüköztürk, O. (2017). “Deep learning-based crack damage detection using convolutional neural network.” Computer-Aided Civil and Infrastructure Engineering, Wiley, Vol. 32, No. 5, pp. 361-378, https://doi.org/10.1111/mice.12263."DOI
3 
"Gao, Y. and Mosalam, K. M. (2018). “Deep transfer learning for image-based structural damage recognition.” Computer-Aided Civil and Infrastructure Engineering, Vol. 33, No. 9, pp. 748-768."URL
4 
"Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q. V. and Adam, H. (2019). “Searching for MobileNetV3.” arXiv preprint, https://arxiv.org/abs/1905.02244v5."URL
5 
"Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and Adam, H. (2017). “MobileNets : efficient convolutional neural networks for mobile vision applications.” arXiv preprint, https://arxiv.org/abs/1704.04861v1."URL
6 
"Kingma, D. P. and Ba, J. (2014). “ADAM: A method for stochastic optimization.” Proceedings of 3rd International Conference for Learning Representations, San Diego, USA, 2015, arXiv preprint, https://arxiv.org/abs/1412.6980."URL
7 
"Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012). “Imagenet classification with deep convolutional neural networks.” Advances in Neural Information Processing Systems, MIT Press, Vol. 5, pp. 1097-1105."URL
8 
"Kurbiel, T. and Khaleghian, S. (2017). “Training of deep neural networks based on distance measures using RMSProp.” arXiv preprint, https://arxiv.org/abs/1708.01911."URL
9 
"Lin, Y., Nie, Z. and Ma, H. (2017). “Structural damage detection with automatic feature-extraction through deep learning.” Computer-Aided Civil and Infrastructure Engineering, Wiley, Vol. 32, No. 12, pp. 1025-1046, https://doi.org/10.1111/mice.12313."DOI
10 
"Nam, W. S., Jung, H., Park, K. H., Kim, C. M. and Kim, G. S. (2022). “Development of deep learning-based damage detection prototype for concrete bridge condition evaluation.” KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 42, No. 1, pp. 107-116, https://doi.org/10.12652/Ksce.2022.42.1.0107 (in Korean)."DOI
11 
"Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L.-C. (2018). “Mobilenetv2 : Inverted residuals and linear bottlenecks.” https://arxiv.org/abs/1801.04381."URL
12 
"Scherer, D., Műller, A. and Behnke, S. (2010). “Evaluation of pooling operations in convolutional architectures for object recognition.” Proceedings of 20th International Conference on Artificial Neural Networks (ICANN), Thessaloniki, Greece, pp. 92-101."URL
13 
"Sifre, L. (2014). Rigid-motion scattering for image classification. PhD thesis, Ecole Polytechnique, CMAP, New York."URL
14 
"Soukup, D. and Huber-Mork, R. (2014). “Convolutional neural networks for steel surface defect detection from photometric stereo images.” Proceedings of 10th International Symposium on Visual Computing, Las Vegas, NV, pp. 668-677."URL
15 
"Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014). “Dropout : A simple way to prevent neural networks from overfitting.” Journal of Machine Learning Research, JMLR.org, Vol. 15, No. 1, pp. 1929-1958."URL
16 
"Vetrivel, A., Gerke, M., Kerl, N., Nex, F. and Vosselman, G. (2017). “Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images and multiple-kernel-learning.” ISPRS Journal of Photogrammetry and Remote Sensing, Elsevier, Vol. 140, pp. 45-59, https://doi.org/10.1016/j.isprsjprs.2017.03.001."DOI
17 
"Yeum, C. M. and Dyke, S. J. (2015). “Vision-based automated crack detection for bridge inspection.” Computer-Aided Civil and Infrastructure Engineering, Wiley, Vol. 30, No. 10, pp. 759-770, https://doi.org/10.1111/mice.12141."DOI