(Sang Kyu Jin)
진상규1†
(Hawng Bae Kim)
김황배2
-
정회원․ 교신저자․ 남서울대학교 GIS공학과 박사과정
(Corresponding>Author ․ Namseoul University ․)
-
정회원․ 남서울대학교 GIS공학과 정교수 및 첨단교통환경연구소 소장
(Namseoul University)
Key words (Korean)
GIS, 교통카드 빅 데이터, 대중교통, 연계영향권, 철도역
Key words
GIS, Transportation card big data, Transit, Influence zone of linkage, Railway station
1. 서 론
1.1 연구의 배경 및 목적
현재 우리나라의 수도권에만 철도역 499개소 있다. 하지만 철도역과 연계수단 간의 연계영향권에 대한 연구는 많지 않은 실정이다. 연계영향권보다는 접근영향권이나
교통 수단과 연계시설의 연계성에 대한 연구들이 주를 이루고 있다.
또한 철도역의 연계영향권에 대한 연구가 이루어졌다 하더라도 사용한 데이터들이 설문조사와 기초통계에 의존하여 이론적기반이나 분석기법에 한계를 가지고
있다.
본 논문에서는 보다 정확한 철도역의 대중교통 연계영향권 설정 위해 교통카드 빅 데이터를 사용하였다.
교통카드 빅 데이터를 공간데이터로 변환하여 GIS 분석 기법을 통한 철도역의 대중교통 연계영향권을 설정하는 새로운 방법론을 제시하는데 목적이 있다.
1.2 연구의 범위 및 방법론
본 장에서는 대중교통의 연계영향권 설정 대한 기존연구들을 고찰하고 본 논문과 차별성을 검토해 보았다. 그리고 연구의 범위를 설정하였다.
1.2.1 기존 연구 검토
A Study of Blind Spot Analysis for Public Transportation by Level of Service (LOS)
in Public Transportation Supply Service (Kim et al., 2011)에서는 공간데이터(GIS)를 이용하여 시내버스와
도시철도 공급서비스 수준 측면에서 대중교통 서비스권역의 사각지대를 분석하는 연구를 진행하였다.
The Development and Application of LOS (Level of Service) for Accessibility to Railway
Stations (Kim et al., 2016)에서는 연계영향권에 대한 정의를 해당 철도역의 각 방향에서 철도를 이용하는 승객의 최초 출발지를 포함한
면적으로 정의하고 있다. 연계영향권을 설문조사자료 사용하여 설정하였다. 또한 연계서비스수준(LOS)을 가중평균 연계시간(분)으로 산출하여 역 기능별로
고속철도역, 일반철도역, 도시철도역 등의 LOS수준을 정립하였다.
1.2.2 기존 연구의 시사점
기존연구들에서는 철도 및 대중교통의 연계영향권 설정과 관련하여 분석 시 통계 및 설문조사 자료들을 활용하여 분석을 하고 있다. 또한 연계영향권의 설정보다는
연계서비스수준(LOS) 지표를 개발하는데 목적을 두고 있다.
본 논문에서는 철도역의 대중교통 연계영향권을 설정하는데 중점을 두고 있다. 정확한 연계영향권 설정을 분석하기 위해 교통카드 빅 데이터를 이용하여 GIS
분석 기법을 개발하는데 기존 연구들과 차별성을 두고 있다.
1.2.3 연구의 범위
본 연구에서는 첫째, 교통카드 빅 데이터 중 스마트카드와 EB카드 데이터를 활용하여 공간데이터로 구축하였다.
둘째, 정류장별 위치 데이터에 이용수요를 고려한 철도역의 대중교통 연계영향권을 설정하는 방법을 제시하였다.
셋째, 연계영향권 설정을 위하여 시간과 거리를 각각 GIS분석기법으로 분석하여 버스의 종류별로 마을버스, 지선버스, 간선버스의 연계영향권을 제시하였다.
넷째, 실제 이용된 정류장의 위치를 기준으로 연계서비스수준(LOS) 평가 해보았다
다섯째, 서울특별시의 길음역에 대한 사례분석을 실시하였다.
2. 대중교통 연계영향권 개념 및 설정방법론
2.1 대중교통 연계영향권의 개념정립
본 논문에서는 말하는 대중교통 연계영향권은 출발지(출발정류장)에서 대중교통을 이용하여 철도역까지 접근이 가능한 지역의 범위를 연계영향권이라고 말한다.
Fig. 1
The Concept of Connection Influence
2.2 대중교통 연계영향권 설정방법론
2.2.1 대중교통 연계영향권 분석을 위한 공간데이터 구축 방법론
철도역의 대중교통 연계영향권 설정을 위해 우선 교통카드 빅 데이터 속성을 분석한다. 이를 토대로 연계영향권에 필요한 공간데이터를 구축한다. 공간데이터를
구축 위해 사용한 교통카드 빅 데이터는 스마트카드와 EB 카드의 데이터를 사용한다. 각각의 교통카드 빅 데이터 속성 중 중복된 항목을 기준으로 교통카드
빅 데이터의 통합을 실시한다.
통합된 데이터 중 버스와 전철 간의 환승이 있는 데이터에 대해서 우선적으로 공간데이터로 구축할 데이터를 선별한다.
Fig. 2
Establish Methodologies for Spatial Data
선별된 데이터 중 연계영향권 설정을 위해 공간데이터로 변환 할 항목은 정류장 좌표, 정류장코드, 승하차인원, 환승관련 자료, 대중교통 차종, 승하차시간
등을 선정하였다. 최종적인 공간데이터로 항목들은 Table 1
과 같다.
Table 1. Attributes of GIS Data
|
2.2.2 공간데이터를 활용한 대중교통 연계영향권 설정 방법
철도역의 대중교통 연계영향권 설정을 다음과 같이 분석하였다. 첫째, 변환된 공간데이터 자료 중 대중교통 연계영향권을 가장 잘 알 수 있는 데이터로
하차 철도역을 기준하여 대중교통(버스)으로 환승 후 최종정류장까지 이동한 데이터를 분석하였다.
둘째, 공간데이터로 구축한 자료를 GIS분석 기법에 통해 연계영향권을 설정하였다. 연계영향권 설정 시 마을버스, 지선버스, 간선버스로 구분하여 분석하였다.
또한 각각의 수단별로시간과 거리에 대한 연계영향권을 분석하기 위하여 사용한 GIS 분석 기법은 버퍼 분석(거리)과 래스터 분석(시간)으로 래스터 분석에서는
“Cost Distance”의 분석 통해 연계영향권을 설정하였다.
버퍼분석은 거리의 범위 선정을 위해 GIS툴에서 기본적으로 제공하는 분석기법으로 설정하고자 하는 범위를 km, m 등으로 구분하여 분석한다.
Cost Distance 분석은 거리와 연계 도로의 속도를 고려하여 통행시간으로 산출하는 분석 방법이다. 사용된 산출식은 다음과 같다.
(1)
여기서, = 거리
= 연계도로의 속도
= 통행시간
Fig. 3
Example of Connection Influence
셋째, 철도역에서 환승하여 각각의 수단별로 실제 이용된 정류장들의 km당 이용인원을 분석하여 거리에 따른 연계영향권의 범위를 설정하였다. 설정기준은
이용인원의 비율이 90%이상이 되는 거리로 설정하였다. 또한 설정범위의 기준은 기존 연구1)에서 설문조사 자료를 분석하여 설정한 비율의 기준을 적용하였다.
대중교통 거리별 이용인원의 누적 이용 비율을 활용하여 연계영향권 설정을 위한 거리별 연계영향권 설정 지수를 구하는 공식은 다음의 식과 같다.
(2)
여기서, = km 당 이용인원 비율
= km 당 마을버스 이용인원
= km 당 지선버스 이용인원
= km 당 광역버스 이용인원
= 총 모든 수단의 이용인원
본 연구는 연계서비스 수준을 평가하는 연구가 아니라서 기존 연구와 비교를 위해 Kim (2016)2)에서 개발한 연계서비스수준(LOS) 평가지표 중 도시철도역의 연계서비스수준(LOS) 평가지표를 사용하여 평가해보았다.
Table 2. Connectivity Level of Services (LOS) (unit : min)
|
Data : Kim, S, G. (2016), “The Development and Application of LOS (Level of Service)
for Accessibility to Railway Stations”, Journal of the Korean Society of Civil Engineers
|
3. 철도역의 대중교통 연계영향권 사례연구
3.1 기초자료 수집 및 GIS DB 구축
GIS 프로그램인 Arcgis10.4 프로그램을 이용하여 서울특별시의 길음역을 중심으로 하여 교통카드 빅 데이터를 공간데이터로 변환하여 구축 하였다.
교통카드 빅 데이터3)의 분석을 위해 마이크로 소프트 오피스 기능 중 엑셀을 이용하였다.
Fig. 4
Traffic Card Data Selection Status
구축된 공간데이터는 총 9,267개로 마을버스 2,661개, 지선버스4,032개, 간선버스 2,574개로 구축되었다.
또한 교통카드 빅 데이터의 정류장 좌표를 이용해 서울특별시 버스정류장과 수도권 전철역 17,197개로 Fig. 5
과 같이 구축되었다. 포함하고 있는 항목은 정류장 좌표, 정류장 코드, 행정동명, 정류장명 등이다.
Fig. 5
Seoul's Bus Station GIS Construction
3.2 철도역의 대중교통 연계영향권 분석
교통카드 빅 데이터를 토대로 길음역에 대해 GIS분석 기법으로 마을버스, 지선버스, 광역버스에 대한 연계영향권을 분석하였다.
3.2.1 마을버스 연계영향권 분석
GIS분석을 통하여 길음역의 마을버스 연계영향권을 분석한 결과 거리에 따른 연계영향권은 3km이내으로 분석되었다. 시간 분석을 통하여 이용된 정류장을
기준으로 연계영향권을 분석한 결과 15분 내로 분석되었다. 마을버스 연계영향권은 Fig. 6와 같이 분석되었다.
Fig. 6
Analysis MAP of Connecting Area of Town Bus
3.2.2 지선버스 연계영향권 분석
GIS분석을 통하여 길음역의 지선버스 연계영향권을 분석한 결과 거리에 따른 연계영향권은 5km이상으로 분석되었다. 시간 분석을 통하여 이용된 정류장을
기준으로 연계영향권을 분석한 결과 20분 내로 분석되었다. 지선버스 연계영향권은 Fig. 7와 같이 분석되었다.
Fig. 7
Analysis Map of Connecting Area of City Bus
3.2.3 간선버스 연계영향권 분석
GIS분석을 통하여 길음역의 간선버스 연계영향권을 분석한 결과 거리에 따른 연계영향권은 5km이상으로 분석되었다. 시간 분석을 통하여 이용된 정류장을
기준으로 연계영향권을 분석한 결과 25분이상으로 분석되었다. 간선버스 연계영향권은 Fig. 8와 같이 분석되었다.
Fig. 8
Analysis Map of Connecting Area of Intercity Bus
3.3 철도역의 대중교통 연계영향권 설정 및 평가
길음역의 대중교통 연계영향권 설정을 위하여 마을버스, 지선버스, 간선버스에 대해서 대중교통 누적거리별 이용인원과 도로별 통행시간을 분석하여 대중교통
연계영향권을 설정하였다.
본 연구에서는 대중교통 연계영향권을 이용수요를 기준으로 이용수용의 90%이상이 이용하는 범위에 대해 연계영향권으로 설정하였다.
3.3.1 마을버스 연계영향권 설정 및 평가
마을버스 거리별 이용인원에 대한 연계영향권을 분석한 결과 1km이내 51.03%, 2km이내 99.02%로 2km이내가 거리에 의한 연계영향권으로
설정되었다.
거리분석에서 사용된 정류장들의 위치를 고려한 통행시간에 따른 마을버스 연계영향권 분석한 결과 15분 내로 분석되어 연계서비스수준(LOS)은 “C”수준으로
평가 되었다.
Table 3. Analysis of the Number of Users by Cumulative Distance of Town Bus
|
3.3.2 지선버스 연계영향권 설정 및 평가
지선버스 거리별 이용인원에 대한 연계영향권을 분석한 결과 1km이내 38.91%, 2km이내 85.89%로 3km이내 96.55%로 3km이내가 거리에
의한 연계영향권으로 설정되었다.
거리분석에서 사용된 정류장들의 위치를 고려한 통행시간에 따른 지선버스 연계영향권 분석한 결과 20분 내로 분석되어 연계서비스수준(LOS)은 “D”수준으로
평가 되었다.
Table 4. Analysis of the Number of Users by the Cumulative Distance of City Bus
|
3.3.3 간선버스 연계영향권 설정 및 평가
간선버스 거리별 이용인원에 대한 연계영향권을 분석한 결과 1km이내 44.44%, 2km이내 73.70%로 3km이내 95.49%로 3km이내가 거리에
의한 연계영향권으로 설정되었다.
거리분석에서 사용된 정류장들의 위치를 고려한 통행시간에 따른 간선버스 연계영향권 분석한 결과 25분 이상으로 분석되어 연계서비스수준(LOS)은 “E”수준으로
평가 되었다.
Table 5. Analysis of the Number of Users by the Cumulative Distance of Intercity Bus
|
3.3.4 대중교통 연계영향권 설정 및 평가
대중교통 거리별 이용인원은 마을버스, 지선버스, 간선버스에 대한 총 이용인원을 분석해 길음역의 대중교통 연계영향권을 분석한 결과로 1km이내 43.93%,
2km이내 86.3%, 3km 이내 97.2%로 대중교통의 최적 연계영향권은 3km 이내로 분석되었다.
거리분석에서 사용된 정류장들의 위치를 고려한 통행시간에 따른 대중교통의 연계영향권 분석한 결과 20분 이상 분석되어 연계서비스수준(LOS)은 “D”수준으로
평가 되었다.
Table 6. Analysis of the Number of Users by the Cumulative Distance of Public Transportation
|
Fig. 9
Conjunction Influence of Gireum Station
3.3.5 효용성과 시사점
대중교통 거리별 이용인원의 분석을 통한 연계영향권을 설정한 결과 3km 이후 부터는 이용인원이 급격히 감소하는 것을 알 수 있었다.
본 연구에서 제시한 연계영향권의 설정 방법은 교통카드 빅 데이터를 기준으로 실제로 이용된 정류장들의 위치를 기반으로 설정하였다.
또한 GIS분석을 통하여 버스를 하나의 대중교통 수단으로 분류하지 않고 각각의 교통수단으로 마을버스, 지선버스, 간선버스로 분류하여 연계영향권을 설정하였다.
마지막으로 연계영향권의 연계서비스수준을 평가하고 이를 통하여 적정한 연계영향권을 설정하고자 하였다.
4. 결론 및 향후 연구과제
본 연구에서는 설문조사 자료로 연계영향권을 분석할 경우 응답자의 성향에 따라서 오류가 발생할 수 있다는 문제점을 보완하고자 교통카드 빅 데이터를 공간데이터로
변환해 GIS 분석기법으로 철도역의 대중교통 연계영향권을 설정하는 새로운 방법론 제시하였다.
또한, 대중교통을 마을버스, 지선버스, 간선버스로 분류하여 각각의 연계영향권을 설정하는 방법을 제시해 보다 세밀한 연구결과를 도출할 수 있도록 하였다.
길음역 사례에서 마을버스는 15분이내, 지선버스는 20분이내, 간선버스는 25분 이상으로 연계영향권이 설정되어 각각의 대중교통별로 네트워크의 접근시간의
차이에 따라 명확히 구분됨을 확인하였다.
향후 연구과제로는 교통카드 빅 데이터를 활용하여 일반철도와 고속철도 등에 대한 연계영향권 선정 및 연계성 평가와 관련한 연구가 추가적으로 필요하다.
또한 현재는 하차만 기준으로 분석한 결과로 향후 승차와 하차에 대한 양방향 기준으로 한 연구가 필요 할 것으로 보인다.
1)김시곤(2016), 철도역 연계서비스수준(LOS) 평가지표 설정 및 적용방안
2)김시곤(2016), 철도역 연계서비스수준(LOS) 평가지표 설정 및 적용방안
3)교통카드 데이터는 한국스마트카드와 ㈜eb카드의 쿄통카드 일일데이터를 사용함