All Issue

2021 Vol.41, Issue 4

Structural Engineering

August 2021. pp. 331-340
Abstract
References
1
American Society of Civil Engineers (ASCE) (1999). Structural design for physical security: State of the Practice, American Society of Civil Engineers, USA.
2
ANSYS-AUTODYN (2005). Theory manual revision 4.3., Century Dynamics Inc., USA.
3
Bulson, P. S. (1997). Explosive loading of engineering structures, E & FN SPON.
4
Dohrmann, C. R., Key, S. W. and Heinstein, M. W. (2000). "A method for connecting dissimilar finite element meshes in two dimensions." International Journal for Numerical Methods in Engineering, Vol. 48, No. 5, pp. 655-678. 10.1002/(SICI)1097-0207(20000620)48:5<655::AID-NME893>3.0.CO;2-D
5
Draganic, H. and Varevac, D. (2018). "Analysis of blast wave parameters depending on air mesh size." Shock and Vibration, Vol. 2018, pp. 1-18. 10.1155/2018/3157457
6
Gebbeken, N. and Ruppert, M. (2000). "A new material model for concrete in high-dynamic hydrocode simulations." Archive of Applied Mechanics, Vol. 70, No. 7, pp. 463-478. 10.1007/s004190000079
7
Hetherington, J. G. and Smith, P. D. (1994). Blast and ballistic loading of structures, Butterworth-Heinemann, Washington, DC, USA.
8
Johnson, G. R. and Cook, W. H. (1983). "A constitutive modeling and data for metals subjected to large strain-rates and high temperatures." Proceedings of 7th International Symposium on ballistics, Hague, Netherlands, pp. 541-577.
9
Lu, Y. and Wang, Z. (2006). "Characterization of structural effects from above-ground explosion using coupled numerical simulation." Computers & Structures, Vol. 84, No. 28, pp. 1729-1742. 10.1016/j.compstruc.2006.05.002
10
Nam, J. W., Kim, J. H. J., Kim, S. B., Yi, N. H. and Byun, K .J. (2008). "A study on mesh size dependency of finite element blast structural analysis induced by non-uniform pressure distribution from high explosive blast wave." KSCE Journal of Civil Engineering, KSCE, Vol. 12, No. 4, pp. 259-265. 10.1007/s12205-008-0259-x
11
Riedel, W., Thoma, K. and Hiermaier, S. (1999). "Numerical analysis using a new macroscopic concrete model for hydrocodes." Proceedings of 9th International Symposium on Interaction of the Effects of Munitions with Structures, ISIEMS, Berlin, pp. 315-322.
12
Tham, C. (2009). "Numerical simulation on the interaction of blast waves with a series of aluminum cylinders at near-field." International Journal of Impact Engineering, Vol. 36, No. 1, pp. 122-131. 10.1016/j.ijimpeng.2007.12.011
13
TM5-1300/AFM 88-22/NAVFAC P-397 (1990). Structures to resist the effect of accidental explosions, Joint Departments of the Army, Air Force and Navy Washington, DC, USA.
14
Von Neumann, J. and Richtmyer, R. D. (1950). "A method for the numerical calculation of hydrodynamic shocks." Journal of Applied Physics, Vol. 21, pp. 232-237. 10.1063/1.1699639
15
Yun, S. H. and Park, T. H. (2013). "Multi-physics blast analysis of reinforced high strength concrete." KSCE Journal of Civil Engineering, KSCE, Vol. 17, No. 4, pp. 777-788. 10.1007/s12205-013-0093-7
16
Zalesak, S. T. (1979). "Fully multidimensional flux-corrected transport algorithms for fluids." Journal of Computational Physics, Vol. 31, No. 3, pp. 335-362. 10.1016/0021-9991(79)90051-2
Information
  • Publisher :Korean Society of Civil Engineers
  • Publisher(Ko) :대한토목학회
  • Journal Title :KSCE JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING RESEARCH
  • Journal Title(Ko) :대한토목학회 논문집
  • Volume : 41
  • No :4
  • Pages :331-340
  • Received Date :2021. 02. 09
  • Revised Date :2021. 02. 22
  • Accepted Date : 2021. 03. 04