All Issue

2018 Vol.38, Issue 5 Preview Page
October 2018. pp. 685-692

Busan city implemented 'taxi transfer discount system' since October 2017 in order to create for new demand taxis. However, due to the low transfer discount amount and limited payment method to prepaid cards, it is difficult to attain the aim. In this study, we investigated the usage status of taxi transfer discount system and the intention to use taxi transfer discount system according to the discount amount level. We established a model of intention to estimate demand of taxi transfer discount using ordinal logistic model. The results of analysis are as following. The critical reason for low usage was to limit taxi transfer discount payment methods to prepaid cards other than post-paid cards which is used for most transportation payment. It was found that the discount rate for taxi transfers was affected in order of payment method, the purpose of the travel, major transportation, frequency taxi use, age, transportation costs, and the discount of taxi transfers. Also, the taxi transfer discount could be expected to increase to 1,550 won based on the price elasticity of demand due to changes in taxi transfer discount rate.

부산시는 택시활성화를 목표로 신규 택시이용 수요를 창출하기 위해 2017년 10월부터 전국최초로‘택시환승할인’을 실시하였다. 그러나 환승할인 금액이 적고 결재수단이 선불카드에 한정된 문제 등으로 이용실적이 적어 정책이 제대로 시행되고 있다 보기 어려운 상황이다. 이에 본 연구에서는 택시환승할인 이용실태, 택시환승할인요금 수준에 따른 이용의사를 조사하였으며, 이를 토대로 순서형 로짓 분석을 활용한 택시환승할인 이용의향 모형을 구축하여 정책에 미치는 주요요인을 파악하였다. 분석 결과 택시환승 할인 결제수단을 교통요금 지불의 대다수를 차지하는 후불교통카드(신용카드)를 제외한 것이 이용률 저조의 가장 큰 요인이며 향후 후불교통카드까지 혜택 확대 시 잠재수요가 극대화될 것으로 보인다. 또한 택시환승할인 이용에는 결제수단, 통행목적, 주교통수단, 1주일간 택시이용횟수, 연령대, 한 달 교통비, 택시환승할인요금 순으로 영향을 미치고 있는 것으로 파악되었으며 택시환승할인요금 변동에 따른 수요의 가격탄력성을 조사한 결과 1,550원까지는 택시환승 할인금액 증가대비 적정 이용수요 증가를 기대할 수 있을 것으로 분석되었다.

  1. Ann, K. J. (2015). “Taxi use and operation in Seoul,” Policy reports, Vol. 186, pp. 1-19 (in Korean).
  2. Busan Metropolitan City (2018). Passenger traffic survey results. (in Korean).
  3. Busan Metropolitan City (2017). Taxi Transportation DevelopmentPlan (in Korean).
  4. Han, J. H. and Kim, J. K. (2010). “Analysis of taxi service satisfaction using an ordered probit model.” Transportation Technology and Policy, Vol. 7 (in Korean).
  5. Kang, S. U., Park, J. W., Ku, S. J., Pakr, S. J. and Choi, E. J. (2013). “Taxi operations in world cities and policy implications for Korea.” The Korea Transport Institute (in Korean).
  6. Lee, W. K. (2017). “A plan to revitalize the taxi business and improve the working conditions of the transportation workers.” Busan Development Institute (in Korean).
  7. Richard Williams (2016). “Understanding and interpreting generalized ordered logit models.” The Journal of Mathematical Sociology, Vol. 40, No. 1, pp. 7-20.10.1080/0022250X.2015.1112384
  8. Song, J. R., Lee, S. H. and Kim, S. J. (2009). “A study on the discount fare of taxis transfer system.” Gyeonggi Research Institute policy study, pp. 1-1 (in Korean).
  9. Stefan Boes and Rainer Winkelmann (2006). “Ordered response models.” Allgemeines Statistisches Archiv, Vol. 90, No. 1, pp. 167-181.10.1007/s10182-006-0228-y
  10. Yeon, J. Y. and Ju, J. H. (2015). “User-centered taxi service improvement directions.” Monthly KOTI Magazine on Transport, Vol. 211, pp. 52-57 (in Korean).
  • Publisher :Korean Society of Civil Engineers
  • Publisher(Ko) :대한토목학회
  • Journal Title(Ko) :대한토목학회 논문집
  • Volume : 38
  • No :5
  • Pages :685-692
  • Received Date :2018. 07. 30
  • Accepted Date : 2018. 08. 23