All Issue

2018 Vol.38, Issue 6 Preview Page
December 2018. pp. 851-857
Abstract
In this research, LCA analysis of the manufacturing process of pot bearing for fixed, movable in all directions, movable in one direction was carried out to analyze the environmental load using the LCA methodology. Especially, the water footprint that has been and issue in recent years was analyzed. As a result of LCA, it was analyzed that the contribution of the plate was more than 64.2% in all of the six impact categories in the case of fixed pot bearing base, and more than 94% in the category of resource depletion and photochemical oxidant creation. In the case of all direction pot bearing and one direction pot bearing, the contribution of PTFE was the highest in the global warming and stratospheric ozone depletion, and the contribution by the plate was higher in the other impact categories. The water footprint of each type of pot bearing was analyzed as 22.4m3 H2O eq/kg for one direction pot bearing, 17.1m3 H2O eq/kg for fixed pot bearing, and 14.1m3 H2O eq/kg for all direction pot bearing. As a result of life cycle analysis, the contribution of water use in manufacturing was more than 65% in all three types. The results of this study can be used as basic data for decision making in construction method and material selection of bridges in the future.
본 연구에서는 전과정평가 방법론을 활용하여 고정단, 일방향, 양방향 교량용 포트받침의 제조 공정에 대한 LCA분석을 수행하여 각각의 대한 환경부하를 분석하였으며, 특히 최근 국내외적으로 이슈가 되고 있는 물발자국에 대한 분석을 수행하였다. LCA 분석 결과 고정단 포트받침의 경우 6대 영향범주 모두에서 후판에 의한 기여도가 64.2% 이상으로 분석되었으며, 특히 자원고갈 및 광화학적산화물생성 영향범주에서는 94% 이상의 기여도를 갖는 것으로 분석되었다. 일방향 및 양방향 포트받침의 경우 지구온난화 및 오존층 영향범주에서는 PTFE의 기여도가 가장 높게 분석되었으며, 그 외의 영향범주에서는 후판에 의한 기여도가 높게 나타났다. 포트받침 1개 제조시 형식별 물 이용가능 발자국 분석결과 일방향 22.4m3 H2O eq/ea, 고정단 17.1m3 H2O eq/ea, 양방향 14.1m3 H2O eq/ea 으로 분석되었다. life cycle 단계별 기여도 분석결과 3가지 유형 모두 제조단계의 용수 사용으로 인한 기여도가 65% 이상으로 분석되었다. 본 연구결과는 향후 교량 설계 및 시공단계의 공법 및 자재 선택시 의사결정 기초자료로 활용할 수 있을 것으로 판단된다.
References
  1. Ecoinvent (2017). Ecoinvent Version 2.2, Ecoinvent, Switzerland, Available at: www.ecoinvent.org (Accessed: June, 2018).
  2. Hwang, Y. W. (2000). “The need for LCA for comprehensive environmental load assessment of the construction industry.” Journal of the Korean Society of Civil Engineers Magazine, KSCE, Vol. 48, No. 1, pp. 13-18 (in Korean).
  3. Hwang, Y. W., Wie, D. H., Kim, Y. C. and Kwak, I. H. (2017). “A study on the calculation method of the elastomeric bearing life cycle inventory (LCI) database to improve reliability of evaluation of environmental load of bridges.” Journal of the Korean Society of Civil Engineers, KSCE, Vol. 37, No. 4, pp. 681-691 (in Korean).
  4. ISO (2006). ISO 14040:2006 Environmental Management-Life Cycle Assessment-Principles and framework, ISO, Geneva, Swizerland.
  5. Kim, J. H., Tae, S. H., Kim, R. H. and Lee, J. G. (2015). “Fundmental research for the water footprint estimation of building materials.” Architectural Institute of Korea, Vol. 35, No. 2. pp. 57-58.
  6. Korean Environmental Industry & Technology Institute (KITI) (2017). Consumptive Water-Use coefficient, No. 2017-127 (in Korean).
  7. Ministry of Environment (2006). Manual for Tool of type Ⅲ labelling and LCA, Total (in Korean).
Information
  • Publisher :Korean Society of Civil Engineers
  • Publisher(Ko) :대한토목학회
  • Journal Title :JOURNAL OF THE KOREAN SOCIETY OF CIVIL ENGINEERS
  • Journal Title(Ko) :대한토목학회 논문집
  • Volume : 38
  • No :6
  • Pages :851-857