All Issue

2020 Vol.40, Issue 3 Preview Page

Water Engineering

June 2020. pp. 273-283
Abstract
References
1
Cultural Heritage Administration (2020). Flood history, Available at: http://royaltombs.cha.go.kr (Accessed: January 2, 2020).
2
Gardner, K. K. and Vogel, R. M. (2005). "Predicting ground water nitrate concentration from land use." Ground Water, Vol. 43, No. 3, pp. 343-352.
10.1111/j.1745-6584.2005.0031.x15882326
3
Hu, C., Wu, Q., Li, H., Jian, S., Li, N. and Lou, Z. (2018). "Deep learning with a long short-term memory networks approach for rainfall-runoff simulation." Water, Vol. 10, No. 11, 1543.
10.3390/w10111543
4
Korea Meteorological Administration (KMA) (2020). Meteorological database, Observation Data, Available at: https://data. kma.go.kr (Accessed: December 1, 2019).
5
Le, X. H., Ho, H. V., Lee, G. H. and Jung, S. H. (2019). "Application of long short-term memory (LSTM) neural network for flood forecasting." Water, Vol. 11, No. 7, 1387, DOI: 10.3390/w11071387.
10.3390/w11071387
6
Moore, M. R. (2011). Development of a high-resolution 1D/2D coupled flood simulation of Charles City, Iowa, Master's Thesis, University of Iowa, United States of America (USA).
7
Mosavi, A., Ozturk, P. and Chaw K. K. (2018). "Flood prediction using machine learning models: Literature review." Water, Vol. 10, No. 11, 1536, DOI: 10.3390/w10111536.
10.3390/w10111536
8
Nandi, A., Mandal, A., Wilson, M. and Smith, D. (2016). "Flood hazard mapping in Jamaica using principal component analysis and logistic regression." Environment Earth Science, Vol. 75, No. 465, DOI: 10.1007/s12665-016-5323-0.
10.1007/s12665-016-5323-0
9
Ozdemir, A. (2011). "Using a binary logistic regression method and GIS for evaluating and mapping the groundwater spring potential in the Sultan Mountains (Aksehir, Turkey)." Journal of Hydrology, Vol. 405, No. 1-2, pp. 123-136.
10.1016/j.jhydrol.2011.05.015
10
Park, J. H., Kim, S. H. and Bae, D. H. (2019). "Evaluating appropriateness of the design methodology for urban sewer system." Journal of Korea Water Resource Association, KWRA, Vol. 52, No. 6, pp. 411-420.
11
Pradhan, B. (2009). "Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing." Journal of Spatial Hydrology, Vol. 9, No. 2, pp. 1-18.
12
Rai, P. K., Chahar, B. R. and Dhanya, C. T. (2017). "GIS-based SWMM model for simulating the catchment response to flood evetns." Hydrology Research, Vol. 48, No. 2, pp. 384-394.
10.2166/nh.2016.260
13
Risi, R. D., Jalayer, F. and Paola, F. D. (2015). "Meso-scale hazard zoning of potentially flood prone areas." Journal of Hydrology, Vol. 527, pp. 316-325.
10.1016/j.jhydrol.2015.04.070
14
Seoul Metropolitan City (2015). Comprehensive plan for storm and flood damage reduction, Korea, Vol. 1, Chapter 3, pp. 374-375.
15
Seoul Metropolitan Government (2020). Flood criterion data, Available at: http://safecity.seoul.go.kr (Accessed: January 5, 2020)
16
Shen, C. (2018). "A transdisciplinary review of deep learning research and its relevance for water resources scientists." Water Resources Research, Vol. 54, No. 11, pp. 8558-8593, DOI: 10.1029/2018WR022643.
10.1029/2018WR022643
17
Son, A. L., Kim, B. H. and Han, K. Y. (2015). "A study on prediction of inundation area considering road network in urban area." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 35, No. 2, pp. 307-318.
10.12652/Ksce.2015.35.2.0307
Information
  • Publisher :Korean Society of Civil Engineers
  • Publisher(Ko) :대한토목학회
  • Journal Title :KSCE JOURNAL OF CIVIL AND ENVIRONMENTAL ENGINEERING RESEARCH
  • Journal Title(Ko) :대한토목학회 논문집
  • Volume : 40
  • No :3
  • Pages :273-283
  • Received Date :2020. 02. 12
  • Revised Date :2020. 02. 26
  • Accepted Date : 2020. 04. 06