All Issue

2018 Vol.38, Issue 6 Preview Page
December 2018. pp. 831-838
This paper presents a method to estimate the flow discharge in a backwater affected river junction. First, unsteady HEC-RAS model was simulated and calibrated using 2 recent real flood and then HPG (Hydraulic Performance Graph) was created by plotting the relationship between upstream and downstream stages and discharge in the reach and performing kriging interpolation. During a flood, the discharge through the reach can be estimated based on the stages at its ends and the developed HPG. These discharge data were in good agreement with the automatic discharge measurements such as ADVM. This study could provide an economical and practical method for estimating discharge in a junction with a high hysteresis of stage-discharge relationships.
본 논문에서는 합류부 배수영향을 받는 지점에서 유량을 산정할 수 있는 방법을 제안하였다. 먼저, 최근 2개의 홍수사상에 대한 HEC-RAS 부정류 모의를 수행하여 모형을 보정하였으며, 관심구간 상하류 수위와 유량과의 관계 그래프를 작성하고 크리깅 보간을 수행함으로써 HPG (Hydraulic Performance Graph)를 작성하였다. 대상 홍수기간 동안 HPG와 상하류 연속 수위 자료를 이용하여 구간 유량을 산정하였고, ADVM 같은 자동유량측정 자료와 비교하여 비교적 잘 일치하는 것을 확인하였다. 본 연구결과는 수위-유량 관계곡선의 이력현상이 큰 배수영향 구간에서 유량을 산정하는데 경제적이고 실용적인 방법을 제공할 것이다.
  1. Choi, G. W., Chae, S. A., Chang, Y. G. and Hwang, Y. M. (2010). “An experimental study on the change of hydraulic characteristics by the training wall.” Proceedings in KWRA, Korea Water Resources Association, pp. 561-564 (in Korean).
  2. Chow, V. T. (1958). Open Channel Hydraulics, McGraw Hill, Tokyo, Japan.
  3. Dottori, F., Martina, M. L. V. and Todini, E. (2009). “A dynamic rating curve approach to indirect discharge measurement.” Hydrology and Earth System Science, Vol. 13, pp. 847-863.
  4. Fenton, J. D. and Keller, R. J. (2001). “The calculation of stream flow from measurements of stage.” Technical Report 01/6, Cooperative Research Centre for Catchment Hydrology, Melbourne, Australia, p. 84.
  5. Fread, D. L. (1975). “Computation stage-discharge relationship affected by unsteady flow.” Water Resources Bulletin, Vol. 11, No. 2, pp. 429-442.
  6. Gonzalez-Castro, J. A. and Ansar, M. (2003). “Applicability of hydraulic performance graph for flow estimation in open channels.” Proceedings in World Water & Environmental Resources Congress 2003, ASCE, Philadelphia, Pennsylvania, doi: 10.1061/40685 (2003)188.
  7. Gonzalez-Castro, J. A. and Yen, B. C. (2000). “Applicability of hydraulic performance graph for unsteady flow routing.” Hydraulic Engineering Series No. 64, University of Illinois at Urbana- Champaign, Urbana, Illinois199p.
  8. Henderson, F. M. (1966). “Open channel flow.” Macmilliam Series in Civil Engineering, Macmilliam eds., New York, USA, p. 522.
  9. Herschy, R. W. (1995). Streamflow Measurement (2nd edition), E & FN Spon, London, U.K.
  10. Hidayat, H., Vermeulen, B., Sassi, M. G., Torfs, P. J. J. F. and Hoitink, A. J. F. (2011). “Discharge estimation in a backwater affected meandering river.” Hydrology and Earth System Sciences, Vol. 15, No. 8, pp. 2717-2728.
  11. Jones, B. E. (1915). “A method of correcting river discharge for a changing stage.” U.S. Geological Survey Water Supply Paper, 375-E, pp. 117-130.
  12. Kim, D., Yang, S. K. and Yu, K. (2012). “Analysis of loop-rating curve in a gravel and rock-bed moutain stream.” Journal of Korea Water Resources Association, Vol. 45, No. 9, pp. 853-860 (in Korean).
  13. Kim, S. H., Hyun, J. S., Kim, J. S. and Jun, K. S. (2014). “Real-time flood stage forecasting of tributary junctions in Namhan River.” Journal of Korea Water Resources Association, Vol. 47, No. 6, pp. 561-572 (in Korean).
  14. Kim, W., Kim, C. Y., Kim, D. G., Lee, C. J. and Hwang, S. H. (2005). “Determination of stage-discharge relationship using the numerical model.” Proceedings in KWRA, Korea Water Resources Association, pp. 319-323 (in Korean).
  15. Kwon, S. I., Kim, W., Kim, D. G., Kim, C. Y. and Lee, C. J. (2008). “Discharge estimation in backwater reach of river using hydraulic performance graph.” Proceedings of 2008 Korea Water Resources Association, Korea Water Resources Association (in Korean).
  16. Ministry of Land, Transport and Maritime Affairs (MLTM) (2008). 2010-2019 Master Plan for Hydrological Survey (in Korean).
  17. Rantz, S. E. (1982). “Measurement and Computation of Streamflow: Volume 2. Computation of Discharge.” U.S. Geological Survey Water Supply Paper 2175, pp. 390-438.
  18. Schmidt, A. R. and Yen, B. C. (2002). “Stage-discharge rating curves revisited.” In Hydraulic measurements and experimental methods 2002, pp. 1-10.
  19. Seo, Y., Seo, I. W. and Shin, J. (2014). “Development of the hydraulic performance graph model and its application.” Journal of The Korean Society of Civil Engineers, Vol. 34, No. 5, pp. 1373-1382.
  20. Yen, B. C. and Gonzalez-Castro, J. A. (1994). “Determination of boneyard creek flow capacity by hydraulic performance graph.” WRC Research Report No. 219, Water Resources Center, University of Illinois at Urbana-Champaign, Urbana, Illinois.
  21. Yen, B. C. and Gonzalez-Castro, J. A. (2000). “Open-channel capacity determination using hydraulic performance graph.” ASCE Journal of Hydraulic Engineering, Vol. 126, No. 2, pp. 112-122.
  • Publisher :Korean Society of Civil Engineers
  • Publisher(Ko) :대한토목학회
  • Journal Title(Ko) :대한토목학회 논문집
  • Volume : 38
  • No :6
  • Pages :831-838