All Issue

2019 Vol.39, Issue 6 Preview Page

Geotechnical Engineering


December 2019. pp. 801-809
Abstract


References
1 

Bandfield, J. L., Hayne, P. O., Williams, J. P., Greenhagen, B. T. and Paige, D. A. (2015). "Lunar surface roughness derived from LRO Diviner radiometer observations." Icarus, Vol. 248, pp. 357-372.

10.1016/j.icarus.2014.11.009
2 

Carrier, W. D., Olhoeft, G. R. and Mendell, W. (1991). Physical properties of the lunar surface. In Lunar Sourcebook, New York: Cambridge University Press. pp. 475-594.

3 

Fa, W. and Wieczorek, M. A. (2012)."Regolith thickness over the lunar nearside: Results from Earth-based 70-cm Arecibo radar observations." Icarus, Vol. 218, No. 2, pp. 771-787.

10.1016/j.icarus.2012.01.010
4 

Hayne, P. O., Bandfield, J. L., Siegler, M. A., Vasavada, A .R., Ghent, R. R., Williams, J. P., Greenhagen, B. T., Aharonson, O., Elder, C. M., Lucey, P. G. and Paige, D. A. (2017). "Global regolith thermophysical properties of the moon from the diviner lunar radiometer experiment." J. Geophy. Res. Planets, Vol. 122, No. 12, pp. 2371-2400.

10.1002/2017JE005387
5 

Hayne, P., Bandfield, J., Vasavada, A., Ghent, R., Siegler, M., Williams, J. P., Greenhagen, B., Aharonson, O. and Paige, D. (2013). "Thermophysical properties of the lunar surface from Diviner observations." In EGU Gen. Assembly, Vol. 15, pp. 10871.

6 

Hemingway, B. S., Krupka, K. M. and Robie, R. A. (1981). "Heat capacities of the alkali feldspars between 350 and 1000 K from differential scanning calorimetry, the thermodynamic functions of the alkali feldspars from 298.15 to 1400 K, and the reaction quartz + jadeite = analbite." American Mineralogist, Vol. 66, pp. 1202-1215.

7 

Hermalyn, B., Schultz, P. H., Shirley, M., Ennico, K. and Colaprete, A. (2012). "Scouring the surface: Ejecta dynamics and the LCROSS impact event." Icarus, Vol. 218, No. 1, pp. 654-665.

10.1016/j.icarus.2011.12.025
8 

Hong, S. and Shin, H. (2018). "Trend analysis of lunar exploration missions for lunar base construction." J. Kor. Academia-Indust. cooper. Soci., Vol. 19, No. 7, pp. 144-152.

9 

Ju, G. (2016). "Development status of domestic & overseas space exploration & associated technology." J. the Kor Soc. for aeronautical & space sci., Vol. 44, No. 8, pp. 741-757.

10.5139/JKSAS.2016.44.8.741
10 

Keihm, S. J. (1984). "Interpretation of the lunar microwave brightness temperature spectrum: Feasibility of orbital heat flow mapping." Icarus, Vol. 60, No. 3, pp. 568-589.

10.1016/0019-1035(84)90165-9
11 

Kopp, G. and Lean, J. L. (2011). "A new, lower value of total solar irradiance: Evidence and climate significance." Geophy. Res. Letters, Vol. 38, No. 1, p. L01706.

10.1029/2010GL045777
12 

Lang, K. (2012). Astrophysical data: Planets and stars. Springer, New York.

13 

Langseth, M. G., Keihm, S. J. and Peters, K. (1976). "Revised lunar heat-flow values, Lunar and Planet." Sci. Conf. Proc., Vol. 7, pp. 3143-3171.

14 

Ledlow, M. J., Zeilik, M., Burns, J. O., Gisler, G. R., Zhao, J. H. and Baker, D. N. (1992). "Subsurface emissions from Mercury-VLA radio observations at 2 and 6 centimeters." The Astrophy. J., Vol. 384, pp. 640-655.

10.1086/170906
15 

Lee, J., Ryu, B. H. and Lee, H. C. (2018) "Experimental assessment of frozen regolith shear strength using a newly developed drilling equipment" Proc. of KSCE 2018 Convention, KSCE, Korea.

16 

Logan, L. M., Hunt, G. R., Balsamo, S. R. and Salisbury, J. W. (1972). "Midinfrared emission spectra of Apollo 14 and 15 soils and remote compositional mapping of the moon." Lunar and Planet. Sci. Conf., Vol. 3, pp. 3069-3076.

17 

McKay, D. S., Heiken, G., Basu, A., Blanford, G., Simon, S., Reedy, R., French, B. M. and Papike, J. (1991). The lunar regolith. In Lunar sourcebook, Cambridge University Press, New York, pp. 285-356.

18 

Melosh, H. J. (1989). Impact cratering: A geologic process, Oxford University Press, New York, p. 245.

19 

Mitchell, D. L. and De Pater, I. (1994). "Microwave imaging of Mercury's thermal emission at wavelengths from 0.3 to 20.5 cm." Icarus, Vol. 110, No. 1, pp. 2-32.

10.1006/icar.1994.1105
20 

Spencer, J. R. (1990). "A Rough-Surface Thermophysical Model for Airless Planets." Icarus, Vol. 83, No. 1, pp. 27-38.

10.1016/0019-1035(90)90004-S
21 

Vasavada, A. R., Bandfield, J. L., Greenhagen, B. T., Hayne, P. O., Siegler, M. A., Williams, J. P. and Paige, D. A. (2012). "Lunar equatorial surface temperatures and regolith properties from the Diviner Lunar Radiometer Experiment." J. Geophy. Res., Vol. 117, No. E12, p. E00H18.

10.1029/2011JE003987
22 

Vasavada, A. R., Paige, D. A. and Wood, S. E. (1999). "Near- surface temperatures on Mercury and the Moon and the stability of polar ice deposits." Icarus, Vol. 141, No. 2, pp. 179-193.

10.1006/icar.1999.6175
23 

Whipple, F. L. (1950). "A comet model. I. The acceleration of comet Encke." The Astrophy. J., Vol. 111, pp. 375-394.

10.1086/145272
24 

Williams, J. P., Paige, D. A., Greenhagen, B. T. and Sefton-Nash, E. (2017). "The global surface temperatures of the moon as measured by the diviner lunar radiometer experiment." Icarus, Vol. 283, pp. 300-325.

10.1016/j.icarus.2016.08.012
Information
  • Publisher :Korean Society of Civil Engineers
  • Publisher(Ko) :대한토목학회
  • Journal Title :JOURNAL OF THE KOREAN SOCIETY OF CIVIL ENGINEERS
  • Journal Title(Ko) :대한토목학회 논문집
  • Volume : 39
  • No :6
  • Pages :801-809
  • Received Date :2019. 08. 06
  • Revised Date :2019. 09. 25
  • Accepted Date : 2019. 11. 04