All Issue

2019 Vol.39, Issue 5 Preview Page

October 2019. pp. 631-636
Abstract


References
1 

Azar, E. R. and McCabe, B. (2012a). "Automated visual recognition of dump trucks in construction videos." Journal of Computing in Civil Engineering, Vol. 26, No. 6, pp. 769-781.

10.1061/(ASCE)CP.1943-5487.0000179
2 

Azar, E. R. and McCabe, B. (2012b). "Part based model and spatial-temporal reasoning to recognize hydraulic excavators in construction images and videos." Automation in Construction, Vol. 24, pp. 194-202.

10.1016/j.autcon.2012.03.003
3 

Azar, E. R., Dickinson, S. and McCabe, B. (2013). "Server-Customer interaction tracker: computer vision-based system to estimate dirt-loading cycles." Journal of Construction Engineering and Management, Vol. 139, No. 7, pp. 785-794.

10.1061/(ASCE)CO.1943-7862.0000652
4 

Cai, J., Zhang, Y. and Cai, H. (2019). "Two-step long short-term memory method for identifying construction activities through positional and attentional cues." Automation in Construction, Vol. 106, p. 102886.

10.1016/j.autcon.2019.102886
5 

Chi, S. and Caldas, C. H. (2011). "Automated object identification using optical video cameras on construction sites." Computer-Aided Civil and Infrastructure Engineering, Vol. 26, No. 5, pp. 368-380.

10.1111/j.1467-8667.2010.00690.x
6 

Chi, S. and Caldas, C. H. (2012). "Image-based safety assessment: automated spatial safety risk identification of earthmoving and surface mining activities." Journal of Construction Engineering and Management, Vol. 138, No. 3, pp. 341-351.

10.1061/(ASCE)CO.1943-7862.0000438
7 

Chi, S., Caldas, C. H. and Kim, D. Y. (2009). "A methodology for object identification and tracking in construction based on spatial modeling and image matching techniques." Computer-Aided Civil and Infrastructure Engineering, Vol. 24, No. 3, pp. 199-211.

10.1111/j.1467-8667.2008.00580.x
8 

Chung, S. (2018). Bridge damage factor recognition from inspection reports using active recurrent neural network, Master Thesis, Seoul National University.

9 

Fang, W., Ding, L., Zhong, B., Love, P. E. D. and Luo, H. (2018). "Automated detection of workers and heavy equipment on construction sites: A convolutional neural network approach." Advanced Engineering Informatics, Vol. 37, pp. 139-149.

10.1016/j.aei.2018.05.003
10 

Golparvar-Fard, M., Heydarian, A. and Niebles, J. C. (2013). "Vision- based action recognition of earthmoving equipment using spatio- temporal features and support vector machine classifiers." Advanced Engineering Informatics, Vol. 27, No. 4, pp. 652-663.

10.1016/j.aei.2013.09.001
11 

Gong, J. and Caldas, C. H. (2010). "Computer vision-based video interpretation model for automated productivity analysis of construction operations." Journal of Computing in Civil Engineering, Vol. 24, No. 3, pp. 252-263.

10.1061/(ASCE)CP.1943-5487.0000027
12 

Han, S. U., Achar, M., Lee, S. H. and Peña-Mora, F. (2013). "Empirical assessment of a RGB-D sensor on motion capture and action recognition for construction worker monitoring." Visualization in Engineering, Vol. 1, No. 1, pp. 1-13.

10.1186/2213-7459-1-6
13 

Han, S. U., Lee, S. H. and Peña-mora, F. (2014). "Vision-based detection of unsafe actions of a construction worker: case study of ladder climbing." Journal of Computing in Civil Engineering, Vol. 27, No. 6, pp. 635-644.

10.1061/(ASCE)CP.1943-5487.0000279
14 

Kim, H. J., Kim, H. K., Hong, Y. W. and Byun, H. R. (2018b). "Detecting construction equipment using a region-based fully convolutional network and transfer learning." Journal of Computing in Civil Engineering, Vol. 32, No. 2, p. 04017082.

10.1061/(ASCE)CP.1943-5487.0000731
15 

Kim, H. J., Kim, K. N. and Kim, H. K. (2016). "Vision-based object-centric safety assessment using fuzzy inference: monitoring struck-by accidents with moving objects." Journal of Computing in Civil Engineering, Vol. 30, No. 4, p. 04015075.

10.1061/(ASCE)CP.1943-5487.0000562
16 

Kim, J. W. and Chi, S. H. (2017). "Adaptive detector and tracker on constrution sites using functional integration and online learning." Journal of Computing in Civil Engineering, Vol. 31, No. 5, p. 04017026.

10.1061/(ASCE)CP.1943-5487.0000677
17 

Kim, J. W. and Chi, S. H. (2019). "Action recognition of earthmoving excavators based on sequential pattern analysis of visual features and operation cycles." Automation in Construction, Vol. 104, pp. 255-264.

10.1016/j.autcon.2019.03.025
18 

Kim, J. W., Chi, S. H. and Seo, J. W. (2018a). "Interaction analysis for vision-based activity identification of earthmoving excavators and dump trucks." Automation in Construction, Vol. 87, pp. 297-308.

10.1016/j.autcon.2017.12.016
19 

Kim, J., Ham, Y. J., Chung, Y. H. and Chi, S. H. (2019). "Systematic camera placement framework for operation-level visual monitoring on construction jobsites." Journal of Construction Engineering and Management, Vol. 145, No. 4, p. 04019019.

10.1061/(ASCE)CO.1943-7862.0001636
20 

Korea Construction Technology Promotion Act (2016). Enforcement decree article 98 and 99, statutes of the Republic of Korea.

21 

Luo, X., Li, H., Cao, D., Dai, F., Seo, J. and Lee, S. (2018). "Recognizing diverse construction activities in site images via relevance networks of construction-related objects detected by convolutional neural networks." Journal of Computing in Civil Engineering, Vol. 32, No. 3, p. 04018012.

10.1061/(ASCE)CP.1943-5487.0000756
22 

Memarzadeh, M., Golparvar-Fard, M. and Niebles, J. C. (2013). "Automated 2D detection of construction equipment and workers from site video streams using histograms of oriented gradients and colors." Automation in Construction, Vol. 32, pp. 24-37.

10.1016/j.autcon.2012.12.002
23 

Park, M. W. and Brilakis, I. (2012). "Construction worker detection in video frames for initializing vision trackers." Automation in Construction, Vol. 28, pp. 15-25.

10.1016/j.autcon.2012.06.001
24 

Park, M. W. and Brilakis, I. (2016). "Continuous localization of construction workers via integration of detection and tracking." Automation in Construction, Vol. 72, pp. 129-142.

10.1016/j.autcon.2016.08.039
25 

Park, M. W., Elsafty, N. and Zhu, Z. (2015). "Hardhat-wearing detection for enhancing on-site safety of construction workers." Journal of Construction Engineering and Management, Vol. 141, No. 9, p. 04015024.

10.1061/(ASCE)CO.1943-7862.0000974
26 

Ren, S., He, K., Girshick, R. and Sun, J. (2017). "Faster R-CNN: towards real-time object detection with region proposal networks." IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 39, No. 6, pp. 1137-1149.

10.1109/TPAMI.2016.257703127295650
27 

Settles, B. (2010). Active learning literature survey. Computer Science Technical Report 1648, University of Wisconsin-Madison.

28 

Soltani, M. M., Zhu, Z. and Hammad, A. (2017). "Skeleton estimation of excavator by detecting its parts." Automation in Construction, Vol. 82, pp. 1-15.

10.1016/j.autcon.2017.06.023
29 

Son, H. J., Choi, H. C., Seong, H. W. and Kim, C. W. (2019). "Detection of construction workers under varying poses and changing background in image sequences via very deep residual networks." Automation in Construction, Vol. 99, pp. 27-38.

10.1016/j.autcon.2018.11.033
30 

Yang, J., Vela, P., Teizer, J. and Shi, Z. (2014). "Vision-based tower crane tracking for understanding construction activity." Journal of Computing in Civil Engineering, Vol. 28, No. 1, pp. 103-112.

10.1061/(ASCE)CP.1943-5487.0000242
31 

Zhu, Z., Ren, X. and Chen, Z. (2016). "Visual tracking of construction jobsite workforce and equipment with particle filtering." Journal of Computing in Civil Engineering, Vol. 30, No. 6, pp. 1-15.

10.1061/(ASCE)CP.1943-5487.0000573
32 

Zou, J. and Kim, H. (2007). "Using hue, saturation, and value color space for hydraulic excavator idle time analysis." Journal of Computing in Civil Engineering, Vol. 21, No. 4, pp. 238-246.

10.1061/(ASCE)0887-3801(2007)21:4(238)
Information
  • Publisher :Korean Society of Civil Engineers
  • Publisher(Ko) :대한토목학회
  • Journal Title :JOURNAL OF THE KOREAN SOCIETY OF CIVIL ENGINEERS
  • Journal Title(Ko) :대한토목학회 논문집
  • Volume : 39
  • No :5
  • Pages :631-636
  • Received Date :2019. 08. 07
  • Revised Date :2019. 08. 23
  • Accepted Date : 2019. 08. 28